Prashant Chandrasekar

Industry Experience: 3.5 years. Research Experience: 5 years

18 Church St. Unit 1 Natick, MA, 01760			peecee@vt.edu (540) 998 7654		
EDUCATION	Virginia Tech – Blacksburg, V	A	Graduation: Oct-Dec 2020		
	Ph.D. Computer Science (GPA: 3.86/4.0)				
	Publication Link: http://peeceeprashant.weebly.com/ University of Michigan - Ann Arbor, MI December 2009				
					B.S.E Computer Science & Engineering
	TECHNICAL	Research Areas	Digital Libraries, NLP, Knowledge repr	esentation and modeling	
BACKGROUND	Languages/Frameworks	Python, R (basic knowledge), PL/SQL,	Java, JMP, Minitab		
	Frequently Used Libraries	es Scikit-learn, NLTK, Gensim, HuggingFace Transformers, Pandas, etc.			
RESEARCH	Human behavior during disru	uptions caused by hurricanes	March 2018 - Current		
EXPERIENCE	Digital Libraries Research Laboratory – Blacksburg, VA				
	Role: Graduate Research Assistant				
	Goal: Identify infrastructure and human impact during hurricane and to propose best practices for				
	Emergency Management System and other infrastructures to improve recovery time				
	Method:				
	1. Interview collaborators', who represent leaders in urban planning, transportation and power outage,				
	and design a set of processes and analytical workflows to match their information need.				
	2. Develop strategy which maximizes our near-real-time collection of social media data, about hurricanes,				
	that aligns with principal investigators and researchers' vision for modeling and simulation of impact,				
	response and recovery.				
	3. Design and develop analytics workflows such as: a) predicting geo-location of collection of tweets, b)				
	identifying tweets that talk specifically about power outage, infrastructure damage and transport				
	disruptions, c) identifying user preparation and response as represented in social media, among others				
	4. Manage data fusion efforts by integrating information from various sources and providing interface				
	for data sharing and support for ad-hoc data and analytical requests.				
	Impact/Outcome: The team has been able to:				
	1. Collect over 100 million tweets with multiple derived (extracted and predicted) metadata of interest				
	such as tweets pertaining to human preparedness and response, school closures, power outages,				
	infrastructure damage, etc.				
	2. Build multiple trained models to predict/infer tweet geo-location, relevance and categories (such as				
	tweet about utility damage, emotional support, among others), that can be applied to future				
	hurricanes.				
	3. Develop text-based analysis such as sentiment, tweet topic, to corroborate with other (official) sources of information.				
	Depression in veterans		May 2017- August 2017		
	Oak Ridge National Lab – Oak Ridge, TN				
	Role: Research Intern				
	Goal: Propose methodology for longitudinal study of veterans' psychological progress				

Method: Literature review and proof-of-concept design

Impact/Outcome: Designed a state-of-the-art framework with a list of novel features for model building,

using psychological notes, authored by medical professionals, about their interactions with veterans.

Social network-based clinical trial for addiction recovery	Ja
Social network-based chinical that for addiction recovery	J

January 2015 – May 2018

Digital Libraries Research Laboratory – Blacksburg, VA

Role: Graduate Research Assistant

Programming Languages/Frameworks: Python, R, JMP

Goal: Build a social-network-centric framework and represent computer science-related efforts in the study aims to understand how participants, who are in recovery from substance addiction, behave with one another.

Method:

- 1. Interview clinical psychologists to a) understand what they are trying to learn from the clinical trial, b) to collect all the resources that they wish to include in the clinical trial and c) to ascertain the experience that they want the study participants to feel in this closed social network-based experiment.
- 2. Propose design of social network, with key features such as testimonials, AA-type virtual meetings, and integration of surveys, that bring a more "recovery-centric" feel to the participants.
- 3. Develop and instrument all the data collection methods that help capture the very minute feedback that we can receive from the participants, regarding their peer-to-peer engagement and website engagement.
- 4. Aid statisticians in their research efforts, by designing and developing data collection and analysis pipelines to bring the data from all the heterogeneous sources, under one umbrella.
- 5. Conduct exploratory analysis of behavior of participants in the network and build models to predict/infer behavioral outcomes such as information propagation, engagement and social influence and psychological outcomes such as addiction relapse.

Impact/Outcome: The team has been able to:

- 1. Successfully conducted 5 clinical trials that involved a total of 1280 participants.
- 2. Integrate and process close to 13000 survey responses and social network-based engagement data.
- 3. Learn from execution and analysis: a) how monetary incentives play a role on user engagement, b) that it was important to group people with similar backgrounds and addiction history, for longer interactions and c) that it is best to have shorter term trials over long-term so that we could have multiple iterations and test out many more theories.

INDUSTRY	Intuit Inc. – Bangalore, India	April 2011 – November 2013		
EXPERIENCE	Intuit Inc Mountain View, California	June 2010 – March 2011		
	Lehman Brothers Inc New York, New York	May-August 2007		
	Emirates Airlines – Dubai, U.A.E	May 2005 - August 2005		
COMPETITION	Natural Language Processing	January 2016 – May 2016		
	Discourse Parsing - identify implicit and explicit discourses in a sentence			
	As a part of a class project submission for the class, NLP for Noisy Data, my project team entered into a			
	competition to a CONLL conference competition to parse discourses characterized by the Penn Treebank.			
	We extracted various features and employed a variety of classification models to extract argument pair			
	and connectives.			